Callow Bog SAC
(site code 000595)

Conservation objectives supporting document - raised bog habitats

Version 1

January 2016
Contents

1 INTRODUCTION ... 2
 1.1 RAISED BOGS .. 2
 1.1.1 Raised Bogs Microtopography .. 3
 1.1.2 Typical Flora of Irish Raised Bogs ... 5
 1.1.3 Typical Fauna of Irish Raised Bogs ... 6
 1.2 HABITATS DIRECTIVE RAISED BOG HABITATS IN IRELAND .. 9
 1.2.1 Restoration of Active Raised Bog in Ireland ... 10
 1.3 CALLOW BOG SAC .. 11
 1.3.1 Flora of Calow Bog .. 11
 1.3.2 Fauna of Calow Bog ... 12

2 CONSERVATION OBJECTIVES .. 13
 2.1 AREA ... 13
 2.2 RANGE .. 14
 2.3 STRUCTURE AND FUNCTIONS ... 15
 2.3.1 High bog area ... 15
 2.3.2 Hydrological regime: water levels .. 15
 2.3.3 Hydrological regime: flow patterns .. 17
 2.3.4 Transitional areas between high bog and surrounding mineral soils (includes cutover areas) .. 17
 2.3.5 Vegetation quality: central ecotope, active flush, soaks, bog woodland 18
 2.3.6 Vegetation quality: microtopographical features ... 19
 2.3.7 Vegetation quality: bog moss (Sphagnum) species .. 19
 2.3.8 Typical ARB species: flora ... 20
 2.3.9 Typical ARB species: fauna .. 20
 2.3.10 Elements of local distinctiveness ... 21
 2.3.10.1 Site features ... 21
 2.3.10.2 Rare flora .. 21
 2.3.10.3 Rare fauna ... 21
 2.3.11 Negative physical indicators .. 21
 2.3.12 Vegetation composition: native negative indicator species 21
 2.3.13 Vegetation composition: non-native invasive species .. 22
 2.3.14 Air quality: nitrogen deposition .. 22
 2.3.15 Water quality .. 23

3 REFERENCES .. 24

Map 1: Extent of potential active raised bog on Calow Bog.

Map 2: Distribution of raised bog ecotopes on Calow Bog.

Map 3: Digital elevation model and drainage patterns at Calow Bog.
1 Introduction

This document presents a summary of the background information that has informed the process of setting the Site-Specific Conservation Objective in relation to the priority Annex I habitat ‘active raised bog’ (habitat code 7110) (hereafter referred to as Active Raised Bog (ARB)), for which Callow Bog Special Area of Conservation (SAC) has been designated.

Callow Bog SAC is also designated for two other related Annex I habitats, namely; ‘degraded raised bogs still capable of natural regeneration’ (habitat code 7120) (hereafter referred to as Degraded Raised Bog (DRB)) and ‘depressions on peat substrates of the Rhynchosporion’ (habitat code 7150). Based on the close ecological relationship between these three habitats types, it is not necessary to set specific Conservation Objectives for all three habitats individually. It is considered that should favourable conservation condition for ARB be achieved on the site, then, as a consequence, favourable conservation condition for the other two habitats would also be achieved.

1.1 Raised Bogs

Raised bogs are accumulations of deep peat (typically 3-12m) that originated in shallow lake basins or topographic depressions. The name is derived from the elevated surface, or dome, that develops as raised bogs grow upwards through the accumulation of peat; the domed effect is often exaggerated when the margins of a bog are damaged by turf cutting or drainage, and are drying out. Raised bogs are most abundant in the lowlands of central and mid-west Ireland.

Irish raised bogs are classified into two sub-types (Schouten 1984): 1. Western or intermediate raised bogs, and 2. True midland or eastern raised bogs, based on phytosociological and morphological characteristics. In terms of overall morphology, the main difference between these two raised bog types is that while eastern raised bogs tended to stay more confined to the depressions in which they were formed, western raised bogs tended to grow out beyond their original basin, presumably a result of the higher rainfall levels (Cross 1990). In terms of vegetation differences the most obvious difference between the two bog types is the presence of a number of oceanic plant species on western raised bogs which are absent from the true midland raised bogs. The liverwort species Pleurozia purpurea1 and the moss species Campylopus atrovirens grow on western raised bogs but not on eastern raised bogs; similarly, Carex panicea is generally more common on the high bog surfaces of western raised bogs (Schouten 1984). All of these plant species are widespread in the low-level Atlantic blanket bogs and their presence in western raised bogs is presumed to be due to the higher rainfall levels and greater rain-derived nutrient fluxes.

Exploitation has been extensive and none of the remaining Irish raised bogs are completely intact (Cross 1990). It is estimated that less than 10% of the original raised bog habitat in Ireland is in a near intact state (uncut), with less than 0.5% continuing to support ARB (DAHG 2014). Excavated face banks, whether active or inactive, are a common feature around the margins. Any areas where part of the bog has been removed are termed cutover bog, with the remaining area referred to as high bog or intact bog. In a natural state, raised bogs are circled by a wetland fringe, known as the lagg zone, which is usually characterised by fen

1 Note on species nomenclature: In the case of plant species, only scientific names are used throughout the main text while common English names are included in tables. In the case of faunal species, common English names are used throughout the text (where known) together with scientific names.
communities. In Ireland, most lags have been lost through drainage and land reclamation (Fossitt 2000).

The surface of a relatively intact raised bog is typically wet, acid, deficient in plant nutrients, and supports specialised plant communities that are low in overall diversity and comprising species adapted to the biologically harsh conditions. The vegetation is open, treeless and bog mosses or Sphagnum species dominate the ground layer. Small-scale mosaics of plant communities are characteristic and reflect the complex microtopography of hummocks and hollows on the bog surface (see Section 1.1.1 below). Raised bogs are driest at the margins and wetness generally increases towards the centre of the peat mass where well-developed pool systems are most likely to occur.

Raised bogs may also contain soaks and flushes (wet ‘active’ or dry ‘inactive’) due to the increased supply of nutrients over time through concentrated surface flows, or where there are links with regional groundwater or the underlying mineral substratum. Slight mineral enrichment and / or constant through flow of water provide conditions suitable for a range of species that are not typically associated with other areas of raised bog.

When damaged by peat extraction or drainage, the water table in the peat drops and the bog surface becomes relatively dry; pools are rare or absent, cover of bog mosses is greatly reduced and Calluna vulgaris increases in abundance. The drop in water table causes the peat to compress under its own weight causing the bog surface to deform. Greater deformation occurs closest to areas where the water table has dropped. This increases the slope of the bog surface causing rain falling on the ground surface to flow off the bog more quickly. The effect is normally greatest around the margins and in a typical situation surface wetness increases towards the centre of the bog. Trees such as Betula pubescens and Pinus sylvestris frequently invade the drier cut margins, but may also occur in flushed areas.

In Ireland, the Annex I habitat ARB is currently considered to be in unfavourable bad conservation status principally as a result of marginal turf cutting, more recent semi-industrial peat extraction, and associated drainage effects caused by these activities (NPWS 2008; 2013). The lowering of regional groundwater levels are also known to have had an effect on some sites. Fires associated with turf cutting, dumping, or agricultural activities may also adversely affect the condition of the habitat.

1.1.1 Raised Bogs Microtopography

Raised bogs are typically treeless and are characterised by a distinctive vegetation dominated by bog mosses (Sphagnum), sedges, and dwarf shrubs, all of which are adapted to waterlogged, acidic and exposed conditions. Bog mosses, which have unique properties, are the principal component of peat, and are largely responsible for the typical surface features of hummocks, hollows, lawns, and pools. The wettest bogs, which have extensive pool systems, have the greatest variety of plant and animal life and support a range of specialist species.

The following terms that describe microtopography are generally accepted in the study of mire ecology (Gore 1983). A schematic diagram showing the typical microtopographical divisions is presented in Figure 1.

Pools

Depressions in the bog surface where the water table remains above the surface level all year around or below surface level for only a very short period of time. They are characterised by the presence of aquatic plant species such as Sphagnum cuspidatum, S. denticulatum, and Cladopodiella fluitans. In more degraded scenarios or where high seasonal water fluctuation occurs, the pools contain open water and/or algae. Tear pools are
found on bogs where internal tensions, due to mass movement of peat, has taken place within the high bog and has caused the development of elongated pools. These are frequently found on western bogs and may be natural or anthropogenic in origin.

Hollows

These are shallow depressions (less than 5cm deep) on the bog surface where surface water collects, or where the water table reaches or lies just above ground level, depending on seasonal conditions. They are often filled with *Sphagnum* species such as *S. papillosum* and *S. cuspidatum*. They take many forms but are often eye shaped. Marginal hollows tend to be elongated as they are focused points for surface water run-off. They are often dominated by *Narthecium ossifragum*.

Lawns

These are shallow hollows or flat areas where one species dominates to form a lawn. This is frequently a *Sphagnum* species, such as *Sphagnum magellanicum*, or *S. papillosum* which can completely fill in a hollow to form a small lawn.

Flats

These are more or less flat areas which are intermediate between hollow and hummock communities. They tend to be drier than the above situations.

Hummocks

These are mounds on the bog surface which can range from a few centimetres to more than one metre in height. They are usually composed mainly of *Sphagnum* species, such as *Sphagnum magellanicum*, *S. capillifolium*, *S. austinii* and *S. fuscum* but other bryophyte species such as *Hypnum jutlandicum* and *Leucobryum glaucum* are also important, especially as the hummock grows taller and becomes drier. *Calluna vulgaris* is another important element, as it flourishes where the water table is not at surface level (Kelly & Schouten 2002).

Figure 1 Raised bog microtopographical divisions on the high bog surface (reproduced from Kelly & Schouten 2002).
1.1.2 Typical Flora of Irish Raised Bogs

Raised bogs are characterised by a distinctive vegetation dominated by a variety of mosses (e.g. *Sphagnum* spp., *Hypnum* spp., *Racomitrium* spp.), sedges and grass-like species (e.g. *Eriophorum* spp., *Rhynchospora* spp., *Narthecium* *ossifragum*, *Molinia* *caerulea* and *Carex* spp.), and dwarf shrubs (e.g. *Calluna vulgaris*, *Erica tetralix*, *Vaccinium* spp. and *Empetrum nigrum*). In addition to these groups, a number of other species characterise raised bogs including carnivorous plants (e.g. *Drosera* spp., *Utricularia* spp.), lichens of both the bog surface and epiphytes on the stems of dwarf shrubs and the occasional trees on bogs (e.g. *Cladonia* spp., *Usnea* spp.). Herbaceous plants are not a significant element on raised bogs and include a few commonly occurring species such as *Menyanthes trifoliata*, *Pedicularis sylvatica*, and *Potentilla erecta* (Cross 1990).

Drier areas and hummocks usually support *Calluna vulgaris*, *Eriophorum vaginatum*, *Trichophorum germanicum*, *Erica tetralix*, lichens (*Cladonia* spp.), bog mosses (*Sphagnum capillifolium*, *S. austini*, *S. fuscum*, *S. papillosum*) and other mosses (*Dicranum scoparium*, *Leucobryum glaucum*). Wet hollow areas and pools are characterised by *Eriophorum angustifolium*, *Rhynchospora alba*, *Narthecium ossifragum*, *Drosera* spp., *Menyanthes trifoliata*, bladderworts (*Utricularia* spp.) and bog mosses (*Sphagnum cuspidatum*, *S. denticulatum* and *S. magellanicum*).

A list of flora species that are regarded as being typical of ARB habitat in Ireland is presented in Table 1. A number of these typical species would have a restricted distribution and do not occur throughout the range of the habitat in Ireland (see above), therefore only a subset of these species would be expected to be present on any individual bog.
Table 1 Flora species typically associated with active raised bog in Ireland (after NPWS 2013). Species list is based on vegetation communities defined by Kelly (1993) and Kelly & Schouten (2002).

<table>
<thead>
<tr>
<th>Common name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bog rosemary</td>
<td>Andromeda polifolia</td>
</tr>
<tr>
<td>Bog bead moss</td>
<td>Aulacomnium palustre</td>
</tr>
<tr>
<td>Bristly Swan-neck moss*</td>
<td>Campylopus atrovirens*</td>
</tr>
<tr>
<td>Lichen</td>
<td>Cladonia ciliata</td>
</tr>
<tr>
<td>Lichen</td>
<td>Cladonia portentosa</td>
</tr>
<tr>
<td>Long leaved sundew</td>
<td>Drosera anglica</td>
</tr>
<tr>
<td>Intermediate leaved sundew*</td>
<td>Drosera intermedia*</td>
</tr>
<tr>
<td>Round leaved sundew</td>
<td>Drosera rotundifolia</td>
</tr>
<tr>
<td>Common cotton grass</td>
<td>Eriophorum angustifolium</td>
</tr>
<tr>
<td>Hare’s tail cotton grass</td>
<td>Eriophorum vaginatum</td>
</tr>
<tr>
<td>Large white moss</td>
<td>Leucobryum glaucum</td>
</tr>
<tr>
<td>Bogbean</td>
<td>Menyanthes trifoliata</td>
</tr>
<tr>
<td>Bog asphodel</td>
<td>Narthecium ossifragum</td>
</tr>
<tr>
<td>Purple spoonwort*</td>
<td>Pleurozia purpurea*</td>
</tr>
<tr>
<td>Woolly fringe moss*</td>
<td>Racemitrium lanuginosum*</td>
</tr>
<tr>
<td>White beak-sedge</td>
<td>Rhynchospora alba</td>
</tr>
<tr>
<td>Austin’s bog moss</td>
<td>Sphagnum austini</td>
</tr>
<tr>
<td>Red bog moss</td>
<td>Sphagnum capillifolium</td>
</tr>
<tr>
<td>Feathery bog moss</td>
<td>Sphagnum cuspidatum</td>
</tr>
<tr>
<td>Cow-horn bog moss*</td>
<td>Sphagnum denticulatum*</td>
</tr>
<tr>
<td>Rusty bog moss</td>
<td>Sphagnum fuscum</td>
</tr>
<tr>
<td>Magellanic bog moss</td>
<td>Sphagnum magellanicum</td>
</tr>
<tr>
<td>Papillose bog moss</td>
<td>Sphagnum papillosum</td>
</tr>
<tr>
<td>Golden bog moss*</td>
<td>Sphagnum pulchrum*</td>
</tr>
<tr>
<td>Lustrous bog moss</td>
<td>Sphagnum subnitens</td>
</tr>
<tr>
<td>Bladderwort</td>
<td>Utricularia minor</td>
</tr>
<tr>
<td>Cranberry</td>
<td>Vaccinium oxyccoss</td>
</tr>
</tbody>
</table>

Notes: * Species more typical of western raised bog sites.

1.1.3 Typical Fauna of Irish Raised Bogs

Raised bogs are extremely nutrient poor ecosystems. Acidic, waterlogged and exposed conditions make them an unattractive habitat for animal life. As a consequence they are relatively poor both in terms of species diversity and population densities. Many species are opportunists, vagrant or temporary rather than specialists, but nonetheless may have an important impact on the ecosystem through nutrient imports and exports or other interactions (Cross 1990). A list of fauna species that would be typically associated with raised bog habitat in Ireland is presented in Table 2. The species listed are not confined to ARB and most, if not all, will use other areas of the bog and surrounding habitats.

Raised bog is unsuitable habitat for many vertebrates due to the lack of available foraging and suitable breeding places. The Irish hare is the only mammal commonly occurring. The common frog is the most common vertebrate predator.

Although 18 species of birds have been reported breeding on raised bogs (Wilson 1990) many of these species utilise the bog as a nesting habitat only. They are dependent on other neighbouring habitats such as open water bodies, callows and wet grassland particularly for feeding. Just a few species of bird, including meadow pipit (Anthus pratensis), skylark
(Alauda arvensis) and curlew (Numenius arquata) complete their full breeding cycle on the bog and the first two species are the commonest species occurring (Bracken et al. 2008). Red grouse (Lagopus lagopus) must also be included as a typical bog species, occurring year round as a resident. Red grouse and curlew have declined significantly on raised bogs in recent times. BirdWatch Ireland have published an Action Plan for Raised Bog Birds in Ireland which lists 13 species of conservation concern that are associated with Raised Bogs (O’Connell 2011). A recent review of birds of conservation concern in Ireland has since added meadow pipit (Anthus pratensis) to the red (most endangered) list of Birds of Conservation Concern in Ireland (BoCCI) (Colhoun & Cummins 2013).

Our knowledge of the invertebrate assemblages associated with Irish raised bogs remains incomplete (particularly micro-invertebrate species) with few studies undertaken (Reynolds 1984a; Reynolds 1984b; Reynolds 1985; De Leeuw 1986; O Connor et al. 2001; Crushell et al. 2008; Hannigan & Kelly-Quinn 2011; Wisdom & Bolger 2011, Nolan 2013). Van Duinen (2013) highlights the importance of structural diversity at various spatial scales (e.g. micro-scale of hummock hollow topography to macro-scale which would include the landscape setting of the bog, see Schouten (2002)) as a prerequisite for hosting the full species diversity of raised bog landscapes.

A recent study of Lepidoptera associated with raised bogs identified two species that appear to be characteristic of higher quality raised bog habitat, namely bordered grey (Selidosema brunnearia (Villers, 1789)) and light knot grass (Acronicta menyanthidis (Esper, 1789)) (Flynn 2014).

Recent research on spiders has revealed that a number of species are known to occur in Ireland only on raised bog habitats, all of which are considered local/uncommon or rare across Europe (Myles Nolan pers. comm.). Five of these species that can be considered useful indicators of ARB include: Glyphesis cottonae (La Touche 1945), Walckenaeria alticeps (Denis 1952), Satilatlas britteni (Jackson 1913), Pirata piscatorius (Clerck 1757), and Minicia marginella (Wider 1834) (Myles Nolan pers. comm.).

The information currently available on other invertebrate groups of peatland systems in Ireland is not sufficient to allow a determination of many species that are typically associated with or may be characteristic of higher quality ARB. A selection of invertebrate species and species groups that are known to be typically associated with raised bogs are presented in Table 2.
Table 2 Fauna species typically associated with raised bog ecosystems in Ireland (after O’Connell 1987; Cross 1990; Renou-Wilson et al. 2011; Bracken & Smiddy 2012).

<table>
<thead>
<tr>
<th>Common name</th>
<th>Scientific name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammal species</td>
<td></td>
</tr>
<tr>
<td>Irish hare</td>
<td>Lepus timidus hibernicus</td>
</tr>
<tr>
<td>Otter</td>
<td>Lutra lutra</td>
</tr>
<tr>
<td>Pygmy shrew</td>
<td>Sorex minutes</td>
</tr>
<tr>
<td>Fox</td>
<td>Vulpes vulpes</td>
</tr>
<tr>
<td>Bird species</td>
<td></td>
</tr>
<tr>
<td>Skylark</td>
<td>Alauda arvensis</td>
</tr>
<tr>
<td>Mallard</td>
<td>Anas platyrhynchos</td>
</tr>
<tr>
<td>Greenland white-fronted goose</td>
<td>Anser albiifrons flavirostris</td>
</tr>
<tr>
<td>Meadow pipit</td>
<td>Anthus pratensis</td>
</tr>
<tr>
<td>Hen harrier</td>
<td>Circus cyaneus</td>
</tr>
<tr>
<td>Cuckoo</td>
<td>Cuculus canorus</td>
</tr>
<tr>
<td>Merlin</td>
<td>Falco columbarius</td>
</tr>
<tr>
<td>Kestrel</td>
<td>Falco tinnunculus</td>
</tr>
<tr>
<td>Snipe</td>
<td>Gallinago gallinago</td>
</tr>
<tr>
<td>Red grouse</td>
<td>Lagopus lagopus</td>
</tr>
<tr>
<td>Curlew</td>
<td>Numenius arquata</td>
</tr>
<tr>
<td>Golden plover</td>
<td>Pluvialis apricaria</td>
</tr>
<tr>
<td>Lapwing</td>
<td>Vanellus vanellus</td>
</tr>
<tr>
<td>Reptiles and amphibians</td>
<td></td>
</tr>
<tr>
<td>Common lizard</td>
<td>Lacerta vivipara</td>
</tr>
<tr>
<td>Common frog</td>
<td>Rana temporaria</td>
</tr>
<tr>
<td>Typical invertebrates</td>
<td></td>
</tr>
<tr>
<td>Black slug</td>
<td>Arion ater</td>
</tr>
<tr>
<td>Large heath butterfly</td>
<td>Coenonympha tullia</td>
</tr>
<tr>
<td>Marsh fritillary butterfly</td>
<td>Euphydryas aurinia</td>
</tr>
<tr>
<td>Bog-pool spider</td>
<td>Dolomedes fimbriatus</td>
</tr>
<tr>
<td>Water striders</td>
<td>Gerris and Velia species</td>
</tr>
<tr>
<td>Oak eggar moth</td>
<td>Lasiocampa quercus</td>
</tr>
<tr>
<td>Four-spotted chaser dragonfly</td>
<td>Libellula quadrimaculata</td>
</tr>
<tr>
<td>Fox moth</td>
<td>Macrothylacia rubi</td>
</tr>
<tr>
<td>Ant</td>
<td>Myrmica ruginodis</td>
</tr>
<tr>
<td>Emperor moth</td>
<td>Saturnia pavonia</td>
</tr>
<tr>
<td>Great green bog grasshopper</td>
<td>Stethophyyma grossa</td>
</tr>
<tr>
<td>Other species groups that are well represented on raised bogs include:</td>
<td>Araneae (spiders and mites)</td>
</tr>
<tr>
<td></td>
<td>Ceratopogonidae (biting-midges)</td>
</tr>
<tr>
<td></td>
<td>Chironomids (non-biting midges)</td>
</tr>
<tr>
<td></td>
<td>Coleoptera (beetles)</td>
</tr>
<tr>
<td></td>
<td>Collembola (springtails)</td>
</tr>
<tr>
<td></td>
<td>Diptera (true flies)</td>
</tr>
<tr>
<td></td>
<td>Dytiscidae (water beetles)</td>
</tr>
<tr>
<td></td>
<td>Hemiptera (true bugs)</td>
</tr>
<tr>
<td></td>
<td>Hymenoptera (bees, wasps, ants and sawflies)</td>
</tr>
<tr>
<td></td>
<td>Lepidoptera (butterflies and moths)</td>
</tr>
<tr>
<td></td>
<td>Odonta (dragonflies and damselflies)</td>
</tr>
<tr>
<td></td>
<td>Orthoptera (grasshoppers)</td>
</tr>
<tr>
<td></td>
<td>Syrphidae (hoverflies)</td>
</tr>
<tr>
<td></td>
<td>Tipulidae (craneflies)</td>
</tr>
<tr>
<td></td>
<td>Tabanidae (horseflies)</td>
</tr>
</tbody>
</table>
1.2 Habitats Directive Raised Bog Habitats in Ireland

Four habitat types listed on Annex I of the EU Habitats Directive are typically associated with raised bogs in Ireland, two of which are priority habitats (*):

- 7110 Active raised bogs (ARB)*
- 7120 Degraded raised bogs still capable of natural regeneration (DRB)
- 7150 Depressions on peat substrates of the Rhynchosporion
- 91D0 Bog woodland*

The interpretation manual of EU habitats gives the following description for ‘active raised bogs’: “Acid bogs, ombrotrophic, poor in mineral nutrients, sustained mainly by rainwater, with a water level generally higher than the surrounding water table, with perennial vegetation dominated by colourful Sphagna hummocks allowing for the growth of the bog (Erico-Sphagnetalia magellanici, Scheuchzerietalia palustris p., Utricularietalia intermedio-minoris p., Caricetalia fuscæ p.). The term “active” must be taken to mean still supporting a significant area of vegetation that is normally peat forming, but bogs where active peat formation is temporarily at a standstill, such as after a fire or during a natural climatic cycle e.g., a period of drought, are also included.” (CEC 2007).

DRB should be, according to the interpretation manual capable of regeneration to ‘Active Raised Bog’ in 30 years if appropriate measures are put in place (i.e. no major impacting activities are present and any necessary restoration works are implemented).

In Ireland, the identification of ARB is made at ecotope level based on the vegetation classification developed by Kelly (1993) and Kelly & Schouten (2002).

Raised bog vegetation communities are grouped into a series of community complexes and these complexes are then amalgamated into a series of ecotopes characterised by different physical characteristics using the approach outlined by Kelly & Schouten (2002).

The main ecotopes that community complexes are grouped into include:

- Central ecotope
- Sub-central ecotope
- Active flushes and soaks
- Sub-marginal ecotope
- Marginal ecotope
- Inactive flushes
- Face-bank ecotope

Actively accumulating peat conditions occur within the sub-central and central ecotopes, which are the wettest on the bog and an indication of good quality ARB. Active flushes and soaks are also dominated by Sphagnum mosses and typically have wet conditions. These features are associated with ARB and contribute to the overall diversity of the habitat.

The adjacent surrounding marginal, sub-marginal, and face-bank bog areas typically have a supporting function for the central and sub-central communities but are not peat accumulating. These drier ecotopes may or may not correspond to the Annex I habitat DRB, as it depends on whether they are capable of regeneration to ARB. Other drier ecotopes recorded on the high bog that do not correspond to ARB include ‘inactive flushes’ which typically have a low Sphagnum cover.
The Annex I habitat Rhynchosporion depressions (7150) typically occurs along pool edges and on flats underlain by deep, wet and quaking peat. Typical plant species include Rhynchospora alba, Drosera anglica, Narthecium ossifragum, Sphagnum cuspidatum, S. denticulatum, S. magellanicum, S. papillosum, Menyanthes trifoliata, and Eriophorum angustifolium.

The priority Annex I habitat bog woodland is also actively peat-forming and overlaps with the ARB habitat. Such woodlands are usually dominated by Betula pubescens with a characteristic ground cover dominated by Sphagnum moss species, which often form deep carpets, and other mosses including species of Polytrichum. Dry woodland areas occasionally found on raised bogs have an absence of the characteristic moss layer do not correspond to the Annex I habitat and are not regarded as peat forming. Woodland areas are occasionally found on raised bogs that have an absence of the characteristic moss layer and are not regarded as peat forming. Such areas do not correspond to the Annex I habitat.

1.2.1 Restoration of Active Raised Bog in Ireland

As already mentioned in the Section 1.1, ARB is currently considered to be in unfavourable bad conservation status in Ireland. In addition, according to its definition, DRB should be capable of regeneration to ARB in a 30-year timescale. Thus, it follows that restoration measures are required in order to halt further losses and increase the area of ARB as well as to improve the condition of existing areas of the Annex I habitat.

Most of the restoration works undertaken so far in Ireland have concentrated on the high bog (e.g. Clara Bog, Mongan Bog, Sharavogue Bog and Raheenmore Bog) to prevent further losses as well as to restore areas to ARB. Nevertheless, some restoration works have also been undertaken on cutover areas such as at Ballykenny and Fisherstown Bogs and Killyconnym Bog. Such work aims to do one or more of the following (depending on the bog in question): restore ARB on the high bog; reduce further ARB and DRB loss on the high bog; restore peat forming habitats (such as ARB, bog woodland, poor fen) on the cutover.

Works undertaken by the NPWS have indicated that there are significant differences, both ecological and economic, when comparing the effectiveness of works carried out on the cutover with those carried out on the high bog. Positive and significant results (i.e. expansion or development of ARB) can be achieved over a relatively short timeframe (10 years) on favourable areas of the high bog by blocking high bog drains. In contrast, a longer time period (30 years+) is required to achieve active peat formation on cutover areas, and even then the results are generally confined to smaller areas; i.e. flat areas (≤0.3% surface slope) or enclosed depressions that have sufficient water flow (minimum catchment 0.5ha) to maintain wet conditions throughout the year. A longer time period (minimum 50-100 years) is likely to be required for high quality ARB habitat (vegetation structure and species diversity) to develop on such cutover areas. In addition, costs of restoration measures on cutover areas are typically significantly higher than those on high bog areas.
1.3 Callow Bog SAC

The SAC includes the raised bog, known as Callow Bog which is situated 7km north-west of Frenchpark, Co. Roscommon on the south-western shore of Lough Gara and is underlain by Carboniferous limestone. The site includes both areas of high bog and cutover. Overall the high bog is relatively flat with slight slopes north to Lough Gara. The River Lung flows near the north-western boundary of the site isolating one section of high bog to the north. There is a low-relief drumlin to the north-west of the bog. To the south, the raised bog is surrounded by agricultural land.

The SAC has been selected for three Annex I habitats:

- [7110] Active raised bogs*
- [7120] Degraded raised bogs still capable of natural regeneration
- [7150] Depressions on peat substrates of the Rhynchosporion

Callow Bog is composed of six separate sections of high bog. The main lobe has been cut away into a rough crescent shape and was the only section surveyed by Kelly et al. (1995). The Lung River and a bog road run along the north of this section, separating it from a high bog area to the north. A local access road runs along the western side of main lobe and separates it from a section of bog to the west while another local access road separates the main section from an area of bog to the south and two further bog areas to the east. The site is separated from the adjacent Tullaghanrock Bog (SAC 002354) by the Lung River to the west (Fernandez et al. 2014a, b).

Callow Bog is a western raised bog that has been classified as a Ridge River C bog type (Kelly et al. 1995; Cross 1990). As described above a number of roads and tracks traverse the site which fragments it to some degree. According to Kelly et al. (1995) there is a low relief mineral ridge running under the main lobe which is coincident with a flush (Fernandez et al. 2014a, b).

Pres-cutting has occurred along much of the bog margins, apart from the north-east where the presence of Lough Gara has curtailed access and the bog margins are relatively intact. Afforestation has occurred on the high bog to the north of the site. The site has been subject to regular burning. These are all activities that have resulted in loss of habitat and damage to the hydrological status of the site.

1.3.1 Flora of Callow Bog

ARB at Callow Bog comprises central and sub-central ecotopes. Central ecotope (0.4ha) is found at two locations covering a very small proportion of ARB. In these areas pools cover circa 50% of the surface and the overall Sphagnum cover is 51-75% composed mostly of S. cuspidatum in pools, but also S. papillosum in lawns, and S. austini and S. capillifolium in hummocks. Calluna vulgaris, Eriophorum vaginatum, and E. angustifolium are the most dominant vascular plants and evidence of flushing is indicated by the presence of Vaccinium oxyccocos, Aulacomnium palustre, Pleurozium schreberi, and Hylocomium splendens. The western indicator species Racomitrium lanuginosum, Pleurozia purpurea and Campylopus atrovirens are also recorded.

Pool cover is 26-33% in the other central ecotope area and the overall Sphagnum cover is 51-75% composed mostly of S. cuspidatum in pools and hummocks of S. capillifolium, but also of S. denticulatum in pools, S. papillosum in lawns and S. austini in hummocks. Evidence of flushing is indicated by the presence of Polytrichum strictum, Aulacomnium palustre, Pleurazium schreberi, Molinia caerulea, and Dicranum scoparium. Calluna vulgaris, Eriophorum vaginatum, E. angustifolium, and Rhynchospora alba are the most dominant
vascular plants and the western indicator species *Racomitrium lanuginosum* is also recorded (Fernandez et al. 2014a, b).

Sub-central ecotope (10.9ha) is found at 16 locations across Callow Bog (Fernandez et al. 2014a, b). The pool cover is generally 11-25% and the *Sphagnum* cover is 34-50% dominated by *S. cuspidatum* in pools, *S. papillosum* in lawns and *S. capillifolium* in hummocks. However, *S. denticulatum*, *S. magellanicum*, *S. tenellum*, *S. austinii* and *S. fuscum* are also recorded. *Calluna vulgaris*, *Eriophorum vaginatum* and *Narthecium ossifragum* are the most dominant vascular plants. The best quality sub-central community complex areas have some central ecotope characteristics with a pool cover averaging at 26-33% and a *Sphagnum* cover of 51-75%.

Non-active high bog habitat at Callow Bog comprises sub-marginal, marginal, and face bank ecotopes, as well as inactive flushes and conifer plantation on high bog. The sub-marginal ecotope features the most developed microtopography amongst these areas. *Calluna vulgaris* and *Eriophorum vaginatum* dominated the vegetation in parts and the *Sphagnum* cover, which ranged from 34 to 50%, is composed almost entirely of hummocks of *S. capillifolium*. *Eriophorum angustifolium*, *Carex panicea*, *Narthecium ossifragum* and *Myrica gale* are prominent in some places. Pools have a patchy cover of *Sphagnum* and often consist mostly of open water (Fernandez et al. 2014a, b).

Marginal ecotope is slightly drier than sub-marginal ecotope and is mainly recorded as a narrow band near the margin of the high bog although it covered extensive areas at Callow Bog. The *Sphagnum* cover is even lower here than in the sub-marginal ecotope (usually <10%) and the vegetation is characterised by a higher cover of *Carex panicea*, *Narthecium ossifragum*, *Trichophorum germanicum*, and *Calluna vulgaris*. Face bank ecotope is characterised by firm ground, tall *Calluna vulgaris*, poor *Sphagnum* cover and a flat microtopography (Fernandez et al. 2014a, b).

The high bog also features several inactive flushes. The largest of these is recorded on the main section of high bog. It is dominated mostly by *Molinia caerulea*, occurring in wide bands aligned in a north-south direction. Robust *Calluna vulgaris* is sometimes co-dominant with other species recorded including *Potentilla erecta*, *Aulacomnium palustre*, *Hypnum jutlandicum*, and *Polytrichum strictum*. The *Sphagnum* cover is estimated at 15-20% and is composed mainly of hummocks of *S. capillifolium*, but also *S. papillosum* and *S. austinii*. A band of *Betula pubescens*, *Salix* sp., and *Pinus* sp. occurs in the south-west of the flush and swallow holes are present towards its northern extent (Fernandez et al. 2014a, b).

1.3.2 Fauna of Callow Bog

There is no current information available on the fauna of Callow Bog although it is likely to support a range of species listed in Section 1.1.3 above.
2 Conservation objectives

A site-specific conservation objective aims to define the favourable conservation condition of a habitat or species at site level. The maintenance of habitats and species within sites at favourable condition will contribute to the maintenance of favourable conservation status of those habitats and species at a national level.

Conservation objectives for habitats are defined using attributes and targets that are based on parameters as set out in the Habitats Directive for defining favourable status, namely area, range, and structure and functions. Attributes and targets may change or become more refined as further information becomes available.

National Conservation Objectives for raised bog SACs have recently been published in the Draft National Raised Bog SAC Management Plan (DAHG 2014). The various attributes and the justification of appropriate targets used to define favourable conservation condition for ARB relevant to Callow Bog SAC are discussed in the following sections.

2.1 Area

NPWS has commissioned a number of raised bog surveys between 1993 and the present-Kelly et al. (1995); Derwin & MacGowan (2000); Fernandez et al. (2005); Fernandez et al. (2006); Fernandez et al. (2014). Mapping from these surveys has been used to derive the area of ARB for each bog as shown in Table 3. More recent surveys have been able to employ more precise and detailed mapping techniques and more standardised ecotope descriptions. NPWS undertook a review of data from earlier surveys in 2014 taking into account these improved techniques with the aim of providing more accurate figures for ARB. This in some cases has resulted in a change in ARB area for these earlier time periods (NPWS, unpublished data).

The national SAC target for the attribute ‘habitat area’ has been set at 2,590ha (DAHG 2014). This target is based on the estimated area of ARB (1,940ha) and DRB (650ha) present within the SAC network in 1994 (when the Habitats Directive came into effect).

The area of ARB at Callow Bog in 1994 is estimated to have been 12.3ha, while the area of DRB is estimated to have been 39.4ha (see Table 3). Using the same approach that has been adopted in setting the national SAC target, the site-specific target for Callow Bog would equate to 51.7ha (sum of ARB and DRB in 1994). However, in setting the site-specific target the current hydro-ecological conditions on the bog (including cutover) have been considered in order to ensure that the target being set is based on a realistic appraisal of what is achievable as set out below.

The most recent monitoring survey of the bog estimated the area of ARB to be 11.4ha (Fernandez et al. 2014a, b). This represents a decrease of 0.9ha (7.3%) during the period 1994-2012.

The current extent of DRB as estimated using a recently developed hydrological modelling technique, based largely on Light Detection and Ranging (LiDAR)\(^2\) data is 48.4ha (see DAHG 2014 for further details of the technique). This represents the area of the high bog, which does not currently contain ARB but has topographical conditions deemed suitable to support ARB (see Map 1 which shows the total area of current and modelled potential ARB). This area was further refined to 33.9ha by estimating the area that could be restored by blocking drains on the high bog. This refinement was based on applying an efficacy factor (see DAHG

\(^2\) LiDAR is a remote sensing technology that measures vertical surface elevation by illuminating a target with a laser and analysing the reflected light. This provides much more detailed topographical maps than can be collected by traditional surveying techniques.
Based on the current assessment of the bog, it is therefore concluded that the maximum achievable target for ARB on the high bog is 45.3ha. However, it is important to note that this assumes no further decline of ARB due to impacting activities. Similarly, should the bog be significantly dependent on regional groundwater levels then any deepening of drains in the cutover could further impact the potential restoration of ARB on the high bog.

Table 3 Area of ARB and DRB recorded on the high bog at Callow Bog in 1994, 2003, and 2012 (Source: Fernandez et al. 2014a, b; NPWS, unpublished data).

<table>
<thead>
<tr>
<th></th>
<th>1994 (ha)</th>
<th>2003 (ha)</th>
<th>2012 (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARB</td>
<td>12.3</td>
<td>12.3</td>
<td>11.4</td>
</tr>
<tr>
<td>DRB</td>
<td>39.4</td>
<td>Unknown</td>
<td>33.9</td>
</tr>
</tbody>
</table>

A recent eco-hydrological assessment of the cutover surrounding the high bog undertaken as part of the restoration planning process estimates that, by implementing appropriate management, an additional 8.1ha of ARB could be restored in this area. The long term achievable target for ARB on Callow Bog is therefore set at 53.4ha which is 1.7ha more than the estimated area of ARB and DRB in 1994.

In conclusion, the site-specific target for the attribute habitat area is: **Restore area of active raised bog to 53.4ha, subject to natural processes.**

2.2 Range

At a national scale, range represents the geographic range that encompasses all significant ecological variations of the ARB habitat. The national SAC target for the attribute ‘range’ has been set as ‘not less than current range subject to natural processes’.

However, range, in the form of habitat distribution, may also be important at the site level, particularly within larger SACs, including those containing a number of individual bogs (i.e. complexes). The attribute therefore under the parameter of range is ‘habitat distribution’. At the local level, it is important to conserve the variability and distribution of ARB across a raised bog SAC. This will help to ensure the diversity of the habitat is maintained while lessening the impact of localised damaging activities such as fire.

The conservation of ARB within Callow Bog as set out in Section 2.1 above will contribute to safeguarding the national range of the habitat.

The ARB habitat at Callow includes central and sub-central ecotope, as well as active flush. A map showing the most recent distribution of ecotopes throughout Callow Bog is presented in Map 2.

The site-specific target for the attribute habitat distribution is: **Restore the distribution and variability of active raised bog across the SAC.**
2.3 Structure and functions

Structure and functions relates to the physical components of a habitat ("structure") and the ecological processes that drive it ("functions"). For ARB these include attributes such as the hydrological regime, water quality, habitat quality, species occurrence, elements of local distinctiveness, marginal habitats, negative physical indicators, and negative species occurrence. As several of these attributes are inter-connected, they are all included in order to better define habitat quality in a meaningful way. In some cases, attribute targets are not quantified; however, as more detailed information becomes available (for example through further research), more measurable site-specific targets may be developed. Structure and functions attributes are expanded on in the sections below.

2.3.1 High bog area

On individual raised bogs adequate high bog is required to support the development and maintenance of ARB. Raised bog habitat that is classified as neither ARB nor DRB is still important particularly as a supporting habitat for those listed in Annex I of the Habitats Directive. It is an essential part of the hydrological unit which supports the ARB and DRB habitats. High bog is of value in its own right as a refuge for species characteristic of drier bog conditions as well as for providing a transitional zone between the Annex I habitats of the high bog and surrounding areas. Additional values for the maintenance of high bog include the preservation of its record of past environmental conditions and carbon storage. The area of high bog in the entire SAC network in 1994 was 10,740ha. The corresponding area in 2012 is 10,515ha – indicating that there has been a 225ha loss of high bog since 1994.

The national target for the attribute ‘high bog’ habitat is to ensure no decline in extent of high bog to support the development and maintenance of ARB.

The area of high bog within Callow Bog SAC in 1994 was mapped as 358.2ha, while the corresponding area in 2012 is 352ha (based on interpretation of LiDAR and aerial photography flown in 2012), representing a loss of 6.2ha of high bog (DAHG 2014). The extent of high bog within the SAC in 2012 is illustrated on Map 1.

The site-specific target for the attribute high bog is: No decline in extent of high bog necessary to support the development and maintenance of active raised bog.

2.3.2 Hydrological regime: water levels

Hydrological processes are key drivers of raised bog ecology. The different raised bog communities, assemblages and species are affected by various hydrological attributes. For ARB, mean water levels need to be near or above the surface of bog lawns for most of the year. Seasonal fluctuations should not exceed 20cm, and water level should be within 10cm of the surface, except for very short periods of time (Kelly & Schouten 2002). Gentle slopes that limit intermittent lateral losses of water (through surface run-off) and encourage sustained waterlogging are the most favourable to achieve these conditions. Such conditions may be maintained on steeper slopes in areas of focused flow (flushes).

The traditional view of water flowing across the bog laterally has been recently refined to also consider that water flows vertically through peat into the underlying substrate. Water loss, by this route, depends on the permeability of the material through which the water must flow and the difference in head (water level elevation) in the bog and underlying mineral substrate; larger differences encountered in higher permeability materials will result in greater losses. Although the proportion of water lost in this manner may be small, the sustained loss during prolonged dry periods may be sufficient to impact bog ecotopes.
Drains extending into the mineral substrate in marginal areas surrounding the bog can lead to an increased gradient between the head in the peat and the head in the underlying substrate resulting in increased vertical water losses from the bog.

Callow Bog is essentially split into six sections, as it is divided by roads and the River Lung. The most recent description of drainage at Callow Bog is presented in Fernandez et al. (2014b), who reported that 28.3km of unblocked drains were impacting on high bog habitats. The majority of the drains were classified as functional (25.0km), and the remaining drains classified as reduced functional (3.3km). In addition, 1.7km of unblocked drains was reported to be in-filled with vegetation; it is not known whether these drains are impacting upon high bog habitats.

Cutover bog occurs around all sides of the bog and drains associated with either recent or past peat cutting are present throughout most of the cutover. There is also agricultural drainage maintenance adjacent to the south of this section. The largest section of Callow Bog towards the north-east has an extensive network of drains on the cutover, particularly along the western, southern and south-eastern margins. Cutover drains surround the two smaller sections to the east, which have been cut extensively in the past. The section of Callow Bog, north of the Lung River is more intact with parts of its boundary (in the north-east) apparently a natural gradation into wet birch woodland.

Much of the knowledge regarding the hydrological requirements of raised bog communities in Ireland stems from the extensive ecological and hydrological work undertaken on Clara Bog since the early 1990s. The only available hydrological study for Callow Bog is the work carried out by Kelly et al. (1995); this study only surveyed the largest section of the bog. The hydrochemistry survey identified electrical conductivity (EC) values of <85μS/cm in the cutover to the north-west of the bog, with an EC value of 68μS/cm recorded at the main outlet into the Lung River. This indicates that the water was predominately bog water with little influence from regional groundwater since EC values associated with bog water are typically ≤80μS/cm. Along the central section of the northern boundary EC values of approximately 100μS/cm were recorded, also indicating very little influence from minerotrophic groundwater. EC values within the Lung River were 450μS/cm suggesting significant groundwater influence. In the grass areas to the north-east of the bog, close to Lough Gara, EC values of >390μS/cm were recorded; while in the south and south-east of the bog, ECs of 180-185μS/cm were recorded. The high EC levels in the grass areas suggest significant groundwater influence, while elevated EC values in the drains to the south and south-east suggest there may be some groundwater upwelling in these drains.

Upwelling groundwater suggests that drains may intercept the regional groundwater table. This can result in a decline in groundwater head, which can impact on the surface of the bog through subsidence. The risk of subsidence depends on the permeability of the underlying substrate, which will influence the extents of impacts from changes to groundwater head. Geological mapping indicates that the bog is underlain by three different bedrock formations. Approximately half of the northern section bog (north of the Lung River) is underlain by a sandstone, siltstone and black mudstone unit. South of the Lung River there is dark nodular calcarenite and shale unit and a pale grey massive limestone unit. The limestone unit is a regionally important aquifer as it is subject to karstification (conduit), while the other bedrock layers are locally important aquifers which are moderately productive only in local zones. Subsoil mapping indicates sandstone till is the main subsoil in the surrounding areas and therefore likely to underlie parts of the bog. The presence of a highly productive bedrock unit as well as potentially permeable substrate suggests that a decline in groundwater head may contribute to subsidence on the high bog. Further deepening of marginal drains or the Lung River has the potential to have significant impacts on Callow Bog SAC.
The site-specific target for the attribute hydrological regime – water levels is: **Restore appropriate water levels throughout the site.**

2.3.3 Hydrological regime: flow patterns

As outlined above, ARB depends on water levels being near or above the surface of bog lawns for most of the year. Long and gentle slopes are the most favourable to achieve these conditions. Changes to flow directions due to subsidence of bogs can radically change water regimes and cause drying out of high quality ARB areas and soak systems.

A map illustrating the slopes and drainage patterns on Callow Bog based on a digital elevation model generated from LiDAR imagery flown in 2012 is presented in Map 3.

There is a significant area of focused flow along the northern margin of the largest section of the high bog. Slopes are relatively steep in the area of focused flow (>1%). This suggests that subsidence has taken place on this bog as a result of drainage; however, it must be noted that this is a western type raised bog and these features are more common on such bogs. Areas of focused flow and steep slopes are evident on most other sections of the bog, with flow patterns converging towards drained areas. Slopes are particularly steep in areas where high bog drains are present, indicating the significant impact these drains have had on the hydrology of the bog. Changes to flow patterns or slope arising from subsidence associated either with high bog or marginal drainage are likely to have a significant impact on the high bog habitats at this site.

The site-specific target for the attribute hydrological regime – flow patterns is: **Restore, where possible, appropriate high bog topography, flow directions and slopes.**

2.3.4 Transitional areas between high bog and surrounding mineral soils (includes cutover areas)

Transitional zones between raised bogs and surrounding mineral soils are typically cutover bog and drained lagg zones. The maintenance / restoration of these areas will help to maintain hydrological integrity of ARB and DRB, and support a diversity of other wetland habitats (e.g. wet woodland, swamp and fen) as well as species that they sustain. In some cases, these areas may assist in reducing further losses of ARB / DRB on the high bog and in time could develop into active peat forming habitats (including ARB - see Section 2.1 above). These transitional zones, once restored, can provide ecosystem services through flood attenuation and water purification to downstream areas and potentially increase the carbon storage / sink function of the bog. The estimated extent of such transitional areas within the SAC network is 3,000ha (DAHG 2014). The national target for these transitional areas is to maintain / restore semi-natural habitats with high water levels around as much of the bog margins as necessary.

The transitional areas at Callow Bog include a range of different habitat types (e.g. wet grassland, cutover bog, scrub and conifer plantations). The total area of cutover bog within the Callow Bog SAC is estimated to be circa 244ha. The development of habitats within cutover areas depends on a number of factors including prevailing land-use, topography, upwelling regional groundwater, and drainage.

The vegetation of the cutover is dominated by *Calluna vulgaris* on old peat banks, with stagnant pools in places and some regenerating peat to the south. To the south-east there is much *Phragmites australis*, *Molinia caerulea* and *Typha latifolia* on cutover. Scattered *Ulex europaeus* and *Salix* spp. occur in small amounts. To the north of the high bog the vegetation is dominated by *Rhynchospora alba*, reflecting the disturbance from peat cutting in this area. Here also there is much bare peat. In places towards the centre of the SAC there are old
tracks quite close to the high bog which support calcicole species and which are lined with *Pteridium aquilinum*, *Salix* spp., *Ulex europaeus* and *Molinia caerulea*, along with some *Vaccinium myrtillus*.

Kelly et al. (1995) noted that where the bog is bounded by Lough Gara there is a sharp transition from bog to grazed wet meadow at the north-west and the facebanks are up to 2.5m tall. The bog edge is lined with a narrow band of *Alnus glutinosa*, *Crataegus monogyna*, *Salix* spp., *Rubus fruticosus*, *Vaccinium myrtillus* and *Pteridium aquilinum*. Further east along the edge the facebanks were noted to be lower and the edges were dominated by *Pteridium aquilinum* with some *Ulex europaeus*, short *Salix* spp., *Molinia caerulea* and *Vaccinium myrtillus*. At the most east-southeastern edge of the main high bog section the facebanks are less than 1m high and they grade into wet meadow.

In the area between the lake and the bog grazed wet meadow/fen which floods during the winter was recorded by Kelly et al. (1995). Species recorded to the north-west of this area include: *Juncus effusus*, *J. conglomeratus*, *Iris pseudacorus*, *Agrostis* sp., *Caltha palustris*, and some *Eriophorum angustifolium*. There is a band of *Ulex europaeus* parallel to the lake shore in this area. Beyond is the flood plain with exposed lichen-covered rocks. To the eastnorth-east and east of the bog there is a band of wet meadow dominated by *Juncus effusus* and *Succisa pratensis* with *Hydrocotyle* sp., *Carex rostrata*, *Ranunculus flammula*, *R. repens*, *R. acris*, *Iris pseudacorus*, *Epilobium palustre*, *Valerian officinalae*, *Lythrum salicaria*, *Angelica sylvestris*, *Mentha aquatica*, *Caltha palustris*, *Carex echinata*, *Rumex* sp., *Juncus articulatus*, *Eriophorum angustifolium* and *Anthoxanthum odoratum*. Kelly et al. (1995) noted that this land slopes down to the lake and beyond this a large band of *Phragmites australis* with some *Typha latifolia*. The banks of the Lung River were noted to be dominated by *Juncus effusus*, sedges and grasses. *Iris pseudacorus* and *Glyceria fluitans* were noted in the river.

The site-specific target for the attribute transitional areas is: **Restore adequate transitional areas to support / protect active raised bog and the services it provides.**

2.3.5 Vegetation quality: central ecotope, active flush, soaks, bog woodland

A diverse good quality microtopography on raised bogs consists of *Sphagnum* dominated pools, hollows, lawns and hummocks, which support the highest diversity of species including hummock indicators: *Sphagnum fuscum* and *S. austini*; pool indicators: *S. cuspidatum*, *S. denticulatum*, and indicators of lack of burning events e.g. some lichen species (*Cladonia* spp.) (Cross 1990).

The national target for the attribute vegetation quality has been set as “to maintain / restore sufficient high quality bog vegetation (i.e. central ecotope and / or flushes / soaks). At least 50% of ARB habitat should be central ecotope and / or flush / soaks.” Bog woodland is also regarded as a desirable variant of ARB as it adds species and structural diversity to the habitat and therefore, where relevant, also contributes to the 50% target at site level.

A summary description of the vegetation of Callow Bog is presented in Section 1.3.1 above. The vegetation and habitats of the bog have been described in more detail by Kelly et al. (1995) and Fernandez et al. (2005 & 2014a, b).

The extent of the different ecotopes that correspond with ARB based on the most recent surveys is presented in Table 4. During the most recent surveys ARB comprised central and sub-central ecotope. The target for this attribute is 26.7ha of high quality ARB (50% of ARB target area (53.4ha)).

The extent of the different ecotopes that correspond with ARB based on the most recent surveys is presented in Table 4 and on Map 2. It can be seen that the proportion of ARB that comprises central ecotope is currently 3.5%. Comparing this to results of surveys undertaken
in 2004 indicates that the active flush recorded in 2004 and 1995 is no longer considered active. This change is considered to be largely due to the 2012 survey being more comprehensive than that of 2004, and partly due to differences in interpretation between the two surveys, rather than to any real differences on the ground.

The target for this attribute is 26.7ha of central ecotope (50% of ARB target area (53.4ha)).

Table 4 Extent of ecotopes classified as ARB in 2004 and 2012 (modified from Fernandez et al. 2014a, b).

<table>
<thead>
<tr>
<th>Ecotope</th>
<th>2004</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ha</td>
<td>% of total ARB</td>
</tr>
<tr>
<td>Sub-central ecotope</td>
<td>8.7</td>
<td>75.0</td>
</tr>
<tr>
<td>Central ecotope</td>
<td>0.6</td>
<td>5.2</td>
</tr>
<tr>
<td>Active flush</td>
<td>2.3</td>
<td>19.8</td>
</tr>
<tr>
<td>Total ARB</td>
<td>11.6</td>
<td>11.3</td>
</tr>
</tbody>
</table>

The site-specific target for the attribute vegetation quality is: **Restore 26.7ha of central ecotope/active flush/soaks/bog woodland as appropriate.**

2.3.6 Vegetation quality: microtopographical features

The characteristic microtopographical features of raised bogs are described in Section 1.1.1 above.

Hummock and hollow microtopography is well developed in the central ecotope areas on Callow Bog (Kelly et al. 1995; Fernandez et al. 2014a, b).

The site-specific target for the attribute microtopographical features is: **Restore adequate cover of high quality microtopographical features.**

2.3.7 Vegetation quality: bog moss (*Sphagnum*) species

Bog mosses, which have unique properties, are the principal component of peat, and are largely responsible for the typical microtopographical features as described in Section 2.3.6 above.

The vegetation of a typical raised bog that is still hydrologically intact is characterised by the dominance of several species of Sphagna and dwarf ericoid shrubs. The most abundant species are *Sphagnum capillifolium*, *S. austinii* and *S. papillosum* which form hummocks or low ridges. *Sphagnum fuscum* may also form hummocks (Cross 1990). On the flats *Sphagnum magellanicum*, *S. papillosum*, *S. tenellum*, and *S. subnitens* are the key species. *Sphagnum pulchrum* may also be dominant in flats on western raised bogs. In permanently waterlogged hollows *Sphagnum cuspidatum* and *S. denticulatum* (western bogs) occur. *Sphagnum fallax* is common where there is slight flushing (Cross 1990). The most commonly occurring *Sphagnum* moss species that occur on raised bogs in Ireland are presented in Table 5 along with a summary of their ecology and typical contribution to peat formation.

Kelly et al. (1995) and Fernandez et al. (2014a, b) provide information on the occurrence of *Sphagnum* species throughout Callow Bog.
Table 5 *Sphagnum* species typically associated with raised bog ecosystems in Ireland. Ecology as described by Laine et al. (2009) with minor modifications.

<table>
<thead>
<tr>
<th>Species</th>
<th>Ecology</th>
<th>Peat forming capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphagnum austini</td>
<td>Hummock species</td>
<td>High</td>
</tr>
<tr>
<td>Sphagnum capillifolium</td>
<td>Forms small hummocks and carpets</td>
<td>Moderate</td>
</tr>
<tr>
<td>Sphagnum cuspidatum</td>
<td>Pool and hollow species</td>
<td>Low</td>
</tr>
<tr>
<td>Sphagnum denticulatum</td>
<td>Pool and hollow species</td>
<td>Low</td>
</tr>
<tr>
<td>Sphagnum fallax</td>
<td>Occurs in lawns and carpets, shade tolerant. Indicative of some nutrient enrichment (soaks and active flushes)</td>
<td>Low</td>
</tr>
<tr>
<td>Sphagnum fuscum</td>
<td>Forms dense low and wide, and occasionally high hummocks</td>
<td>High</td>
</tr>
<tr>
<td>Sphagnum magellanicum</td>
<td>Lawn species forming carpets and low hummocks</td>
<td>Moderate</td>
</tr>
<tr>
<td>Sphagnum palustre</td>
<td>Forms hummocks and dense carpets, often in shaded conditions. Indicative of nutrient enrichment (soaks and active flushes)</td>
<td>Low</td>
</tr>
<tr>
<td>Sphagnum papillosum</td>
<td>Lawn, hollow, and low hummock species</td>
<td>Moderate</td>
</tr>
<tr>
<td>Sphagnum pulchrum</td>
<td>Grows in lawns and hollows, more typical of western bogs</td>
<td>Moderate</td>
</tr>
<tr>
<td>Sphagnum squarrosum</td>
<td>Forms carpets and small mounds. Indicative of nutrient enrichment (soaks and active flushes)</td>
<td>Low</td>
</tr>
<tr>
<td>Sphagnum subnitens</td>
<td>Occurs as individual shoots or small cushions and lawns. Tolerant of minerotrophic conditions</td>
<td>Moderate</td>
</tr>
<tr>
<td>Sphagnum tenellum</td>
<td>Occurs as single shoots or weak cushions, typically in disturbed patches of the bog surface</td>
<td>Low</td>
</tr>
</tbody>
</table>

The site-specific target for the attribute bog moss (*Sphagnum*) species is: **Restore adequate cover of bog moss (*Sphagnum*) species to ensure peat-forming capacity.**

2.3.8 Typical ARB species: flora

Callow Bog supports the full complement of plant species typically associated with a true western raised bog (see Section 1.1.2 above).

The key typical species that are indicative of high quality raised bog include *Sphagnum fuscum* and *S. austini* which are associated with hummocks and *S. cuspidatum* and *S. denticulatum* which are associated with pools and hollows. All of these species have been reported from Callow Bog (Fernandez et al. 2014a, b).

The site-specific target for the attribute typical bog flora is: **Restore, where appropriate, typical active raised bog flora.**

2.3.9 Typical ARB species: fauna

As mentioned in Section 1.1.3, a list of typical fauna specific to ARB has not been developed and the table contains species that use the wider raised bog habitat. This may be refined as more information becomes available.

The site-specific target for the attribute typical bog fauna is: **Restore, where appropriate, typical active raised bog fauna.**
2.3.10 Elements of local distinctiveness

A range of features may be associated with raised bogs which add to the scientific, historical, or conservation value of a bog. These can include geological, topographical, archaeological and hydrological features (e.g. soaks, lakes, flushes) and noteworthy species of flora and fauna (Cross 1990). Notable species of flora and fauna include those listed in the Habitats and Birds Directives, Red-listed species and other rare or localised species. For this attribute, features that are particularly associated with ARB are relevant.

2.3.10.1 Site features

One of Callow Bog’s features of interest is its situation on the south-western shore of Lough Gara. There are some remaining fragments of the transitional habitats from bog to lake and river, which are rare in an Irish context.

2.3.10.2 Rare flora

The rare shrub species Frangula alnus (listed as rare in the Irish Red data book) has been recorded from a flush on Callow Bog in past surveys, however, it was not recorded in the most recent survey by Fernandez et al. (2014a, b).

2.3.10.3 Rare fauna

As mentioned above, there is limited current documented site-specific data relating to species that are particularly associated with ARB, including rare species.

In conclusion, the site-specific target for the attribute elements of local distinctiveness is: Maintain features of local distinctiveness, subject to natural processes.

2.3.11 Negative physical indicators

Raised bogs that have been damaged by marginal cutting and drainage, reclamation for agriculture, forestry activities, fire, surface drainage, or the lowering of regional water tables show a range of negative physical indicators (Cross 1990). Such negative physical features of ARB include: bare peat, algae dominated pools and hollows, marginal cracks, tear patterns, subsidence features such as dry peat and / or mineral mounds / ridges emerging or expanding, and burning evidence.

The site has suffered frequent burning in the past.

The site-specific target for the attribute negative physical indicators is: Negative physical features absent or insignificant.

2.3.12 Vegetation composition: native negative indicator species

Indicators of disturbance on a raised bog include species indicative of drying out conditions such as abundant Narthecium ossifragum and Trichophorum germanicum; Eriophorum vaginatum forming tussocks; abundant Sphagnum magellanicum in pools previously dominated by species typical of very wet conditions (e.g. Sphagnum cuspidatum). Indicators of frequent burning events include abundant Cladonia floerkeana and high cover of Carex panicea (particularly in the true midlands raised bog type).

The site-specific target for the attribute native negative indicator species is: Native negative indicator species at insignificant levels.
2.3.13 Vegetation composition: non-native invasive species

Non-native invasive species that can commonly occur on raised bog habitats include: *Pinus contorta*, *Rhododendron ponticum*, and *Sarracenia purpurea* (Cross 1990).

Fernandez *et al.* (2014a, b) recorded a small number of individual *Rhododendron ponticum* on two sections of the bog and *Campylopus introflexus* was recorded scattered across all sections, but at low cover values.

The site-specific target for the attribute non-native invasive species: **Non-native invasive species at insignificant levels and not more than 1% cover.**

2.3.14 Air quality: nitrogen deposition

Peatlands are highly sensitive to air pollution, particularly nitrogen deposition. Reactive nitrogen from fossil fuel combustion or intensive agriculture can contaminate rain and snow, causing soil acidification, nutrient enrichment, and a decline in species that are sensitive to these conditions. There is evidence that the combined impact of elevated nitrogen deposition and a warming climate could exceed the sum of the individual stressors and lead to a dramatic decline in the biodiversity of mosses, sensitive vascular plants, and microbes, potentially leading to catastrophic peat loss (PEATBOG project - http://www.sste.mmu.ac.uk).

Air pollution can change both the species composition and the functioning of peatlands. The primary atmospheric pollutant from the Industrial Revolution to the mid 1970s was sulphur deposition, but levels have since greatly declined. Reactive nitrogen (N) deposition (primarily NO3- and NH4+), which can both acidify and eutrophy, became significantly elevated over a widespread area in the early to mid-20th century and is now the major pollutant in atmospheric deposition across most of Europe (Fowler *et al.* 2005).

Nitrogen is commonly a limiting terrestrial nutrient and in un-impacted peatlands it is tightly cycled. With long-term elevated N deposition, vegetation composition typically shifts toward species adapted to higher nutrient levels, with an overall loss of diversity (Malmer & Wallén 2005). In peatlands, field experiments with N additions within the current European range have shown significant declines in bryophyte species-richness and productivity, and shifts in composition toward vascular plants (Bobbink *et al.* 1998; Bubier *et al.* 2007). Community shifts toward more nitrophilous bryophytes in N-enriched regions such as parts of the Netherlands are also well documented (Greven 1992). In the UK, both a general survey of peatlands across the country (Smart *et al.* 2003), and a targeted study of *Calluna* moorland (Caporn *et al.* 2007) showed significant inverse relationships between levels of nitrogen deposition and species richness, with bryophytes particularly impacted. Changes in the vegetation also impact below-ground communities and biogeochemical processes.

Moderate increases in N deposition from a low level may increase *Sphagnum* and vascular plant productivity without an equal increase in decomposition rates, leading to enhanced carbon accumulation (Turunen *et al.* 2004). However, shifts in species composition from bryophytes to vascular plants may increase the production of easily-decomposable plant material, leading to higher rates of decomposition, and reduced carbon accumulation (Lamers *et al.* 2000; Bubier *et al.* 2007).

The particular sensitivity of nutrient-poor ombrotrophic peatlands to nitrogen enrichment is reflected in the low critical load threshold of between 5 and 10kg N/ha/yr for these ecosystems (Bobbink & Hettelingh 2011), a level which is exceeded over a significant portion of their range. An Irish study during the late 1990s undertaken by Aherne & Farrell (2000) concluded that total N deposition shows a strong east-west gradient, with lowest deposition in the west at 2kg N/ha/yr and highest in the east and south-east at 20kg N/ha/yr. Average N
deposition over the Republic of Ireland was estimated to be approximately 12kg N/ha/yr. The study also concluded that the Critical Load Threshold for N was exceeded in at least 15% of ecosystems studied. The critical load applied to peatland ecosystems by Aherne & Farrell (2000) was 10kg N/ha/yr. This is in line with the recommendation by Bobbink & Hettelingh (2011) that the critical load should be set at the high end of the range in areas of high precipitation and at the low end of the range in areas of low precipitation assuming that Ireland represents a high precipitation area.

It is recommended in the case of Callow Bog that the level of N deposition should not exceed the low end of the range i.e. 5kg N/ha/yr. This recommendation is based on a precautionary approach, as the evidential basis for setting a higher level is not particularly strong as alluded to by Payne (2014). Total N deposition in the vicinity of Callow Bog as reported by Henry & Aherne (2014) is 9.1kg N/ha/yr.

The site-specific target for the attribute air quality is: **Air quality surrounding bog close to natural reference conditions. The level of N deposition should not exceed 5kg N/ha/yr.**

2.3.15 Water quality

Ombrotrophic peat waters found on the surface of raised bogs are characterised by low pH values (pH < 4.5) (Moore & Bellamy 1974) and also have low values of electrical conductivity. This is due to the fact that the raised bog system derives its mineral supply from precipitation, which is usually acidic and low in nutrients. Raised bog vegetation exchanges cations with protons to further reduce the pH.

Hydrochemistry varies in the areas surrounding a raised bog. Locally, conditions may be similar to the high bog due to a dominance of water originating from the bog. However, elsewhere in the marginal areas, there may be increased mineral and nutrient content of the water due to regional groundwater influences, run-off from surrounding mineral soils, and the release of nutrients through oxidation of peat resulting from reduced water levels.

Hydrochemistry data collected by Kelly *et al.* (1995) indicates that there is significant groundwater influence in the wet grassland areas to the north-east of the bog, close to Lough Gara (EC values of >390μS/cm were recorded). Elevated EC values in the drains to the south and south-east also suggest there may be some groundwater upwelling in these drains. Conditions elsewhere within the site indicate a dominance of bog water.

The site-specific target for the attribute water quality is: **Water quality on the high bog and in transitional areas close to natural reference conditions.**
3 References

Flynn, C. (2014) Nocturnal Lepidoptera of Midland Raised Bogs. A thesis submitted to the National University of Ireland, Maynooth for the Degree of Master of Science (MSc.).

Map 1: Extent of potential active raised bog on Callow Bog.
Map 2: Distribution of raised bog ecotopes on Callow Bog.
Map 3: Digital elevation model and drainage patterns at Callow Bog.